
Demo2Code:
From Summarizing Demonstrations to Synthesizing Code via Extended Chain-of-Thought

Huaxiaoyue Wang, Gonzalo Gonzalez-Pumariega, Yash Sharma, Sanjiban Choudhury
Cornell University

Generate Robot Code From Demonstration

Challenges

Key Insight

Our Approach: Demo2Code

Tabletop Manipulation

Novel Kitchen Game: Robotouille

Real World Dataset: EPIC-Kitchens

Personalized
Tasks

Robot
Code

Language Narration
 “Here’s how to make fried rice…’’

Demonstrations

over(‘kettle’,
‘pot’)

in(‘spatula’,
‘hand’)

over(‘rice’,
‘pot’)

Long Horizon
Demonstrations

Complex Task
Code

LLM

Directly generating code from demonstrations is intractable!

[Demonstration N]

…..
State 5:
'robot1' is not holding ‘patty1’
‘patty1’ is at ‘stove1'
…..
State 6:
'patty1' is cooked
…..
State 11:
‘robot1’ is not holding ‘patty1’
‘patty1’ is on top of ‘bottom_bun1’
…..

[Demonstration 1]

Make a burger.
…
Cook a patty at a stove.
Stack the patty on a bottom bun.
Cut a lettuce at a cutting board.
Stack the lettuce on the patty.
Stack a top bun on the lettuce.

def main():

...

cook_obj_at_loc(patty,

stove)

stack_objs(patty,

bottom_bun)

cut_obj_at_loc(lettuce,

cutting_board)

stack_objs(lettuce,

patty)

stack_objs(top_bun,

lettuce)

...

Specification

…
Cook a patty at a stove.
…
Stack a top bun on the
lettuce.

“Make a burger”

Both demonstrations and code are connected by
a latent task specification.

[Demonstration N]

Make a burger.
…..
State 5:
'robot1' is not holding
‘patty1’
‘patty1’ is at ‘stove1'
…..
State 6:
'patty1' is cooked
…..
State 11:
‘robot1’ is not holding
‘patty1’
‘patty1’ is on top of
‘bottom_bun1’
…..

[Demonstration 1]

def cook_obj_at_loc(obj, loc):
if not is_holding(obj):

...
move_then_place(obj, loc)
cook_until_is_cooked(obj)

def move_then_place(obj, loc):
 curr_loc = get_curr_loc()
 if curr_loc != loc:
 move(curr_loc, loc)
 place(obj, place_location)
...
def main():

...
cook_obj_at_loc(patty, stove)
...
stack_objs(top_bun,lettuce)

Stage 1
Recursively summarize

demo —> specification

Stage 2
Recursively expand

specification —> task code

Recursively summarizes each demo,
then concatenates all summaries to
generate a task specification

From the task specification,
generates high-level code, then
recursively defines helper functions

when the language
lacks specificity

when the world has
hidden constraints

when the user has
personal preferences

“Place the purple cylinder to
(the left) of the green block.”

“Place the blue block
on top of red cylinder.”

(but blocked by gray and yellow)

“Stack all objects into two stacks.”
(one stack has only blocks,

other only cylinders)

Cook a patty Cut 2 lettuces

Make a burger Make 2 burgers

Open-source game!

Procedurally generated
environments

Easy to customize (new
assets, tasks, actions, etc.)

Demo2Code generalizes to unseen, more complex tasks

[1] Jacky Liang, et al. Code as policies: Language model programs for embodied control. arXiv preprint arXiv:2209.07753, 2022.

objs = get_all_objs()

for obj in objs:
 soap(obj)
 place(obj,
 “sink_2”)
turn_on(“tap_1")
for obj in objs:
 rinse(obj)
 place(obj,
 “dishrack_1”)
turn_off("tap_1")

objs = get_all_objs()

for obj in objs:
 pick_up(obj)
 go_to(“sink_1”)
 turn_on(“tap_1”)
 soap(obj)
 rinse(obj)
 turn_off("tap_1")
 place(obj,
 “counter_1")

soap(‘bowl_1’)

soap(‘glass_1’)

rinse(‘bowl_1’)

rinse(‘glass_1’)

soap(‘mug_1’)

rinse(‘mug_1’)

place(‘mug_1’)

rinse(‘jug_1’)

User 22:
Prefers soaping all first
then rinsing all objects

User 30:
Prefers soaping then
rinsing each object

